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Abstract

The visualization of brain networks today offers a variety of different tools and approaches.
Representations in 2D such as connectograms, connectivity matrices, and node-link
diagrams are common but an abstract visualization of the network without any anatomical
context. Visualizations tools show anatomical context in 2D but adjust it especially for
a certain species as for example the fruit fly’s brain. This project presents a tool for
data-driven brain network visualization using the open-source graph library Cytoscape.js
to avoid hard coded spatial constraints. The goal of the project was to find a layout
algorithm that resembles the anatomical structure of the brain visualized without any
hard coded constraints. After testing the layouts, they have been evaluated on different
properties like symmetry, node overlapping, and anatomical resemblence. Additionally,
we conducted an open discussion with collaborators of the Research Institute of Molecular
Pathology (IMP) in Vienna and present the results.
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CHAPTER 1
Introduction

The brain’s complex structure and how it organizes itself has always been one of the main
areas of interest in neuroscience. With today’s technical possibilities to get brain network
data, there are a variety of tools available that focus on different aspects of the brain
as well as different species and different dimensions. Brain network visualizations have
different approaches depending on the focus of the project and the data being visualized.
Those tools are mainly developed to help neuroscientists to explore brain data and to
develop hypotheses but also to visualize for explanation purposes.

For 3D data of brain networks including brain regions and their network, the most intu-
itive way is to visualize it in 3D. A common way is to visualize it as a 3D node-link network
with edges rendered as straight lines and nodes rendered as spheres [LDTS14, XWH13].
Edges can also be rendered as curved lines along the brain surfaces [LFG+15]. However,
visualizing a complex brain network with a large number of connections in 3D can have
many obstacles. Cluttering and occlusion can be minimized by giving the user the possi-
bility to filter and select. Still, a chosen selection of interest may have a high number of
connections which can still be difficult to analyze in 3D because of the depth and possible
occlusion. Taking a brain’s complexity, it is difficult to show the highest level of detail
and still see the entire global structure. Different methods like level-of-detail-visualization
[BD07] or edge bundling [BSL+14] can be used to represent the hierarchical level. User
can be given a reference through linked views of the brain network and its anatomical
context [MBB+17] working together with color coding the nodes with the color of their
region (according to the Allen Brain Atlas, etc.).

A different approach is to visualize the network without any anatomical context as
node-link diagrams [nod], connectivity matrices [MM14] or connectograms [IDVH14].
Linked views give the flexibility to choose different 2D representations of the network
and still have the anatomical view at the same time. Working with node-link diagrams,
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1. Introduction

it is difficult to visualize a brain network giving a context with which the user can easily
understand the structure of the layout and find connections. Spring-embedded layouts
usually provide good results for node-link diagrams regarding node distribution and
overlapping. Most of them also support network properties to adjust the layout, so that,
for example, well-connected nodes are closer and insights of the network connections can
be gained by just taking a look at the layout [APLK+15].

NeuroMap [Sor13] presents an anatomical layout using 2D spatial constrains emulating
an abstract view of the fruit fly’s brain. Together with 3D visualizations, showing
the neurons in their anatomical context and rendering potential neural connections as
interactive circuit-style wiring graph, this tool was made to explore data and support
hypothesis formation. However, this solution was adjusted to visualize a drosophila brain
(fruit fly) and would need to be reprogrammed to show any other species.

The goal of this thesis is to develop a tool with the open-source graph library Cy-
toscape.js that uses a data structure containing anatomical and structural connectivity
information about the brain and layouts it data-driven according to the given data in a
2D node-link network. In addition the layout should have the following features:

• reflecting the layout of the brain anatomy giving anatomical context

• should be data-driven, (in the best case) no hard coded spatial constraints

• should be reproducible as the same data should result in a similar layout (to a
certain extend)

• should be visually traceable as the layout should not change too much regarding
changes in the hierarchie

• nodes should in the best case not overlap or the overlap should be minimized

The data-driven layout should solve the process of having to hard code spatial constraints
regarding the species being visualized. This tool should then result in a graph that reflects
the anatomy of the visualized brain. Regions rendered as nodes that are anatomically
close should then also be close in the layout. After this tool is sophisticated enough it
should be integrated into the application for brain network visualization [GSF+18].
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CHAPTER 2
Methodology

Firstly, the data and the data structure used will be presented. Then the most promising
candidates of the layout algorithm supported by Cytoscape.js will be introduced. After-
wards the main concept of how the layouting process with the anatomical connectivity
works and the visualization concept used in this work are presented.

2.1 Data

The data visualized in this project is provided by different brain initiatives as the Allen
Institute [all] or the Human Brain Project [brab]. It includes a hierarchical definition of
the brain regions and connectivity data. The connectivity data that was used can be
divided into two main types:

• Anatomical Connectivity describing neighbouring regions, so only regions that are
neighbours have edges. The edge weight is calculated by how voxels in a 132x80x114
mouse brain are structurally connected. Larger touching areas result in a higher
edge weight. To regulate the case that large brain regions also have larger surfaces
the Normalized Anatomical Connectivity divides the value by the size of the region.

• Structural Connectivity: with the voxel-wise structural connectivity matrix from
Ganglberger et al. [GKP+18] we have information about how voxels in a 132x80x114
mouse brain are structurally connected. The edges directed and their weights are
normalized to a range from 0 to 1.

The structural connectivity was chosen to be visualized in this work but there are
other possible networks like functional connectivity or spatial gene expression correlation
networks.
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2. Methodology

2.2 Data Structure
The data structure developed by Ganglberger et al. [GKHB18] manages to aggregate
queries in real-time. Aggregated queries describing aggregated connectivity from, to, or
between brain areas. It includes hierarchies of brain parcellations but only on the left
and right but not on the front and back and the up and down.

2.3 Layout Algorithms

2.3.1 Compound Spring Embedder

The Compound Spring Embedder (CoSE) is a physics simulation layout. U. Dogrusoz et
al. [DGC+09] first introduced a new algorithm for the layout of undirected compound
graphs dealing with multi-level nesting, links to non-leaf nodes in the nesting hierarchy,
and inter-graph edges that may span multiple levels of nesting. Furthermore, their
algorithm is able to handle non-uniform node sizes.

Force-directed layout algorithm [FR91, EAD84] work with pulling and repelling forces.
Nodes simulate the physics of electrons and edges those of springs till they come to an
equilibrium state. Repulsion acts on objects that are "too close" to avoid nodes from
overlapping and an additional gravitational force is used to keep the graph components
together. Edges work as springs that attract adjacent nodes. Their modified spring
embedder system includes compound nodes and inter-graph edges in the physical system.

Cytoscape offers two different implementations of this algorithm, which for distinction
purposes are going to be mentioned as "CoSE" and "CoSE-Bilkent".

CoSE. This layout based on the algorithm of U. Dogrusoz et al. [DGC+09] was imple-
mented by Gerardo Huck as part of Google Summer of Code 2013 (Mentors: Max Franz,
Christian Lopes, Anders Riutta, Ugur Dogrusoz) [cosb]. It works well on noncompound
graphs and has additional logic for compound graphs. It is less computational expensive
than the CoSE-Bilkent, still producing good results. Layout algorithms can be tweaked
in cytoscape with the properties provided. Choosing the node repulsion multiplier, ideal
edge length, and edge elasticity the results can be optimized.

CoSE-Bilkent. Taking the CoSE implementation, it performs poorly (regarding quality)
due to assumptions and simplifications, especially with compound graphs. The CoSE
layout by Bilkent [cosa] provides a solid implementation of the presented algorithm
[DGC+09]. Although, it is computational more expensive the results are better (taking
criteria as symmetry and node placement). The demo presented by Cytoscape results in
layout that can be seen in Fig. 2.1

2.3.2 Constraint Layout

The constraint layout (cola) [col] is based on a complete rewrite in Javascript of the C++
libcola library. Introduced by Dywer et al. [DKM06], this algorithm allows separation
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2.3. Layout Algorithms

(a) (b)

Figure 2.1: Cytoscape.js Demo using the Cose-Bilkent Layout with 2.1b and without
2.1a compound nodes [cosa].

constraints to enforce a minimum separation between a pair of nodes. Overlap avoidance
is a built-in feature of Cola. Unless particular options are specified that make overlap
avoidance impossible, Cola will in generally produce results where the nodes do not
overlap. Results of this layout algorithm can be seen in Fig. 2.2.

(a) (b)

Figure 2.2: Cytoscape.js Demo using the Cola Layout with 2.2b and without 2.2a
compound nodes [col].

2.3.3 Spread

The spread algorithm [spr] focuses mainly on spreading the nodes so that the whole
view port is used. It consists of two phases: the positioning of the nodes through a
chosen layout algorithm and afterwards spreading the nodes evenly. The implementation
provided in Cytoscape.js uses the Fruchterman-Reingold algorithm [FR91] initially (using
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2. Methodology

the CoSE presented in the section 2.3.1) and then Gansner and North algorithm [GN98]
to spread the nodes over the available space.

In the first phase by default the embedded CoSE algorithm is used because it works fast.
Alternatively, other algorithms can be chosen or the first phase can be skipped and the
node’s existing positions are used for the next phase.
In the second phase the nodes are spread using Steven J. Fortune’s algorithm [For86]
to create Voronoi diagrams. As you can see in Fig. 2.3 this layout results in a good
distribution of nodes using all space available.

Figure 2.3: The Cytoscape.js Demo using the spread layout algorithm provided [spr].

2.3.4 Klay

Based on the paper from Schulze et al. [SSvH14] their algorithm (which was implemented
into cytoscape) was originally developed for data flow diagrams. Ports describing
dedicated connections points with which nodes are connected. Port constraints define
where ports are being place on the corresponding node. Originally this approach was
developed for layered graphs (introduced by Sugiyama et al. [STT81]) which draw vertices
of a directed graph in layers (either as rows or as columns shown in Fig. 2.4).

2.4 Anatomical Layouting
The concept of the data-driven layout is to use the anatomical connectivity mentioned in
section 2.1 and use it for the layout process of the graph. After the layouting process
is done, the edges are removed and replaced by the edges in our case representing the
structural connectivity because the structural connectivity is what neuroscientists want
visualized. It contains the information about the brain network. Nevertheless, any
connectivity mentioned in section 2.1 can be visualized.
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2.5. Visualization Concepts

Figure 2.4: The Cytoscape.js Demo using the klay layout algorithm [kla] provided.

To enable a smooth transitioning because this tool was developed for a web application
where user can switch in between different hierarchy levels we differentiate between two
different layout states: the layout initialization phase and the updating. The layout is
initialized with random node positions. For updating, the precalculated node positions
are taken and the incremental mode is supported.

2.5 Visualization Concepts
The brain regions rendered as nodes are colored with the regions colors using the Allen
Brain Atlas color scheme. Additionally, arrows are rendered to show the direction of the
connection between nodes. The strength of the connection is mapped to the opacity of
the edge and the hue of the arrows (seen in Fig. 2.5). Nodes are labelled with the short
name of the region they represent.

Figure 2.5: Close up of a graph
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CHAPTER 3
Implementation

In this chapter the technologies that were used during this project are briefly explained
following implementation details. Additionally, two different layout approaches are
presented using hierarchical information and the compound node support. As the results
did not show any symmetry or anatomical resemblence, the approaches were not further
developed.

3.1 Technologies

3.1.1 React

The React [rea] interface library offers a component-based way to create interactive user
interfaces. Instead of loading entire pages React only updates and renders the component
where data changes. This requires that each component is independent and manages
their own state. Components have the possibility to be stateless and just work with
input data. In our case the user selects different hierarchies and brain regions, which are
saved in a state passed on to the React component. Components can also be stateful,
controlling their internal state data, which is private.

3.1.2 Redux

Working with different views and user interactions Redux [red] provides a centralized
state container for Javascript apps. Redux works with a single store that saves the
state of the app as object tree. This store can only be changed by emitting actions that
describe what happened. Reducer then specify how the action modifies the state of the
app. Working with Redux makes the application predictable with consistent behaviour
and easy to debug. In our case when a selection is made by the user, the selection is
saved in the store and then passed on to all the other components, including the 2D
graph visualization.
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3. Implementation

3.1.3 Cytoscape.js

Cytoscape.js [cyt] is an open-source graph theory library fully written in Javascript. It
is used for graph analysis and visualization. The library was created at the Donnelly
Centre at the University of Toronto and is the successor of Cytoscape Web.
It supports user interaction with all gestures out-of-the-box as pinch-to-zoom, panning,
drag-and-drop, etc. and can be easily integrated using package managers like npm, yarn
or bower. Instances of Cytoscape.js correspond to a graph. It offers a range of different
possibilities to manipulate the graph’s properties as for example layout, animation, and
interaction. Besides basic layout algorithms that are embedded in the package such as
grid, circle, concentric, etc. it offers more complex layout algorithms as extensions which
were mainly used during this project.

3.2 React-2D-Network

The current prototype of the tool was programmed as a React Component that can easily
be integrated into the framework once it is sophisticated. It was developed, tested and
executed on a laptop using NVIDIA GeForce GTX 1050Ti GPU, an Intel Core i7-7700HQ
2.8GHz CPU, 8 GB RAM and a 128 GB SSD.

The data structure presented in 2.2 is passed to the graph’s React component and
consists of the user’s selection. The selection includes the structural, anatomical, and
normalized anatomical connectivity and the brain regions selected. As all connectivities
are passed as one JSON object, it is filtered and split into the three different types. The
"cm" property of the JSON file represents which type of connectivity is represented with
#121:0 being the structural connectivity, #122:0 the anatomical connectivity and #123:0
the normalized connectivity. The regions are passed separatly.
After those have been saved the regions are mapped from the props by using "this.props"
and for each region a node object according to the Cytoscape.js constraints. Then the
edges are created in a similar process. An additional counter for each edge was added
because per graph each graph object must have a unique id.

To modify a graph there must be a reference to the Cytoscape object. The react-
cytoscapejs package that was used in this tool offers a cy prop allowing to get a reference
Cytoscape object. With the cytoscape object, which represents the graph, nodes, and
edges can be retrieved for updating manually. To have a smooth transition between
layouts that support an incremental mode, node positions must be saved. For this the
old nodes from the graph are retrieved and compared with the current selection. Nodes
that are not in the current selection are removed and nodes which are new are added
each one at a time. Selections cannot be updated with the cy.add(nodes) command
as nodes with the same id are overriden and the position gets lost.

For performance reason we set a threshold to render only edges that have a weight
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3.2. React-2D-Network

above 0.1. Then for the final cytoscape component we set the layout to ’preset’, which
takes the nodes’ precalculated positions for rendering.

As most of algorithms support compound nodes, we tested two possible use cases:
hierarchical layout (brain regions that have the same parent node are rendered as com-
pound nodes) and anatomical layout (parent nodes being the left and right side of the
brain). For this an additional JSON file is needed containing the whole hierarchy of the
brain, which is then used to save each node with its according parent as a cytoscape node
object. Then the graph is rendered as described before. This approach results in a layout
seen in Fig. 3.1b. The brain hierarchy is unbalanced, which results inan unbalanced ratio
of the compound nodes. The compound nodes scenario was tested using the CoSE layout
algorithm.
Working with the anatomical layout, two nodes were added reflecting the left and right
part of the brain (the left side being represented with a blue background and the right
side with a red background seen in Fig. 3.1a). Working with the CoSE-Bilkent because
it has better results regarding symmetry, this approach reaches a similar output to not
using compound nodes but nodes a clearer separated using parent nodes.

11



3. Implementation

(a) Compound nodes, splitting the nodes into the left and right side of
the brain using CoSE layout algorithm

(b) Nodes with the same parent rendered as a compound node using the
CoSE layout algorithm

Figure 3.1: Compound and hierarchical layout result

12



CHAPTER 4
Evaluation

After implementing the different layout algorithms offered by Cytoscape.js, the graphs
were evaluated regarding symmetry, anatomical layout, reproducibility, and visual traca-
bility. The perfomance was also measured as it is important that the layouter runs in
real-time in a web-application. A user study was conducted to gain a general impression
on how the graph is perceived (regarding the properties like symmetry, node overlapping,
etc.) and a quantitative comparison of the symmetry and performance. We evaluate the
graph layout algorithms taking fixed selections of brain regions and (taking the most
promising layout algorithm) we tested two different use cases on how it works regarding
the layout’s stability. The first a selection that chooses regions deep in the hierarchy and
the second use case tested a selection opening and closing the left side and the right side
respectively.

4.1 Quantitative Evaluation

4.1.1 Measures and Test Cases

To evaluate the layout algorithms regarding performance and appearance, we decided on
four different selections that should cover basic user selections:

• only the left side of the brain with 36 regions and 182 anatomical connections,
hierachy levels seen in the Fig. A.9a

• a small selection of the brain with 34 regions and 211 anatomical connections

• a average selection of 76 regions and 519 anatomical connections

• a bigger selection including 100 regions and 688 anatomical connections

13



4. Evaluation

The tool should later be integrated into a framework that works with a parcellation
browser showing the hierachy level of the brain regions selected. For this for each selection
the selection in the parcellation browser is shown in A.9. To compare symmetry for
each layout a line was drawn by myself which should reflect the axis that separates the
left from the right part of the brain. The line should split the nodes into two equally
sized groups. Then the number of wrongly placed nodes (left nodes on the right side
and right nodes on the left side) is determined. As the counting was done manually only
the 34 regions selection was taken for comparison. Due to the biological evolution most
brains in general are symmetrical regarding the left and the right side. So the amount of
wrongly placed nodes additionally indicates anatomic resemblence besides the symmetry.
Considering this, the wrongly placed nodes were counted of the left and right side of the
brain to indicate anatomic resemblence and symmetry. However, layouts also showed no
symmetry axis and were classified as not symmetric.

Regarding performance we used the normalized connectivity as the edge weights have no
impact on the layout but the connections. Because the Klay algorithm was originally
intended for directed graphs and does not work for undirected graphs, it was tested
with the structural connectivity (which is directed) and the results were still compared
with the other layouts. It is only measured how long the layouting algorithm takes to stop.

To show if the layout reflects the anatomy of the brain the coronal and sagittal views of
the adult mouse brain taken from [braa] were chosen to compare with the layout. As
the 2D View only has the coronal and the sagittal view, the 3D View was additionally
considered to have a overall view of the brain for the comparison.

After comparing the layout properties as mentioned above (results A.1) we took the
CoSE-Bilkent because it was the most suitable layout algorithm regarding symmetry
and anatomical layout. Then it was tested with two different use cases how smooth the
layout transitions between different selections with different hierarchy levels.
The first use case takes the 34 regions selection and navigates through different hierarchy
levels with the last one being the one with the highest resolution level and then closing
the selection. The second use case one we test how the layout reacts regarding navigation
through the hierarchy. Once opening the left side and then the right side and then
following by closing each one at a time.

4.1.2 Results

Layout
The CoSE algorithm is a generally good layout algorithm regarding node distribution
taken for example Fig. A.1. Because of the randomized start positions of the nodes
there is no reproducibility of the results. Nodes do not overlap but there is no visible
symmetry. Nevertheless, the layouts sometimes result in an anatomical partition of front
and back (as seen in Fig. A.1c). Taking the node positions usually the nodes that are

14



4.1. Quantitative Evaluation

(a) View from underneath in 3D (b) View from above in 3D

Figure 4.1: 3D views of the mouse brain taken from [braa]

anatomically close are afterwards within a reasonable distance.

The CoSE-Bilkent algorithm outperforms the other layout algorithms regarding all
properties see Fig. A.2. For symmetrical selections (same nodes chosen from the right
and left side of the brain), all test cases result in a visible symmetry. Also regarding the
anatomical reflection (as seen in the underneath view in Fig. 4.1a and for the layout
result in Fig. 4.2c front nodes and back nodes are clearly recognizable. Comparing only
the left brain side selection with the sagittal view seen in Fig. 4.2b, symmetry cannot
be measured as the right side is missing but there is still an anatomical layout visible.
Front and back part can be separated and the overlaying isocortex (green) includes the
striatum (blue) and interbrain (red) as it overlays those brain regions.
Spring embedder algorithms (including the CoSE algorithm presented in section 2.3.1
apply repulsion forces on nodes to avoid overlaps and put some minimal distance between
nodes. Overlapping cannot be avoided in our case because our graph is very dense and
the algorithm cannot satisfy all constraints. As the the CoSE-Bilkent algorithm provided
the best results, we decided to test how smooth it transitions between the selections
using the test cases described in section 4.1.1.

The spread algorithm (taken the CoSE-Bilkent algorithm as pre-layout) results in a very
wide spread diagram (see Fig. A.3). Through the adjustment of the properties there is
no tighter result possible where nodes are positioned closer together. There is no visible
symmetry in the layout but there are no overlaps. Node positions cannot be traced back
to anatomical context.
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4. Evaluation

(a) Coronal view (b) Sagittal view

(c) CoSE-Bilkent Result for both brain sides
and 76 regions in total

(d) CoSE-Bilkent Result for only the left
side of the brain

Figure 4.2: 2D views of the mouse brain [braa] and the 2D network result for the
CoSE-Bilkent Layout

The Cola Layout results (see Fig. A.4) in a good node distribution without any overlaps,
but without any anatomical reference possible or symmetry visible.
Altough the Klay algorithm does not show any anatomical context or symmetry, it does
(partially) reflect the hierarchy of the brain (see Fig. A.5). It can later be used especially
for the hierarchy of the brain regions showing their structural connectivity offering a way
to structure the flows.
A summary of the layout results can be seen in Table A.1.

Performance
Taking that starting point of the layout process till the moment the component is ren-
dered, most of the algorithms perform similar (seen in Table 4.1.2). So the perfomance
does not include preprocessing of the data.

16



4.2. User Study

Table 4.1: Time measured includes the post-processing. The Klay algorithm was tested
with the structural connectivity as with the anatomical connectivity it does not result in
a comparable graph.

left side 34 regions 76 regions 100 regions
Cose 475.3 448.4 6967.9 15251.5
Cose Bilkent 571.8 543.0 7310.3 16029.7
Spread 549.8 500.8 7293.9 15787.7
Cola 484.4 458.8 6930.1 15095.6
Klay 36168.8ms 21000.1ms 2832.9ms 3958.3ms

4.2 User Study
To take an additional qualitative measure into account we conducted a user study with
four collaborators from the Research Institute of Molecular Pathology (IMP) in Vienna.
We worked together with two PhD students, one postdoc and a technician. All of them
were familiar with the Allen Brain Atlas color scheme of the brain regions and are
currently working in the area of brain circuit research. Before starting the user study
they were all quickly introduced into the framework this tool should later be integrated,
so the workflow in which this tool is suppose to be used is clear.

It was generally tried to get feedback on the CoSE-Bilkent results as they were the
most promising ones. Different opinions were gathered and are now represented in this
thesis.

At first it was mentioned that the visualization should in general be adjustable for
colorblind people. In our case we have additional labels and connectivity strength is
represented by opacity and this visualization can be seen by a colorblind person.
Secondly, general orientation in the graph was discussed and what could help improve it.
As the layout algorithm tested during this thesis does not yet support a constant position
of the node, this was complained. Constant positions meaning that there is no rotation
of the graph and nodes stay within the same area. It was mentioned that additional
axes could help with the orientation of left/right and front/back. It was said that to
give better orientation an either abstract view (such as connectograms and similiar) or a
complete sagittal or transversal layout should be shown, everything inbetween can be
confusing. At last it was mentioned that outlining regions could help match nodes faster.
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CHAPTER 5
Future Work

The experiences collected through this project lead to a lot of ideas and opportunities
for improvement. Starting with the layout algorithms the Cytoscape.js library not
yet offers a variety of layout algorithms applications such as Cytoscape itself or yEd
can be used to visualize the data and after having better candidates those algorithms
can be implemented as layout extension or be exported to be visualized with Cytoscape.js.

After trying more layout algorithms the visualization can be improved with the points
mentioned in the user study regarding rotation and showing axes to help orientation.
The relayouting between selections has yet been only implemented for the CoSE-Bilkent
algorithm because it was the one with the best layout results. To make the transitions
more visual tracable an animation can be included to make the changing of the node
positions better visible.

Also the CoSE-Bilkent implementation can be adjusted to perform better for our case.
The layout algorithm performance is decided on the implementation but the pre- and
post-processing of the data can be speed up with, for example, an extra data structure
only saving the difference between selections. That way the difference between the nodes
selected must not always be computed and can save time. All the layout algorithms are
slow for large graphs with more than 500 edges and 70 nodes. For this case it can be
taken into consideration to adjust layouts to our purposes and use heuristics to speed
them up.
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A. Layout Results
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(a) left brain selection (b) 34 regions

(c) 76 regions (d) 100 regions

Figure A.1: CoSE Layout Results
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A. Layout Results

(a) left brain selection (b) 34 regions

(c) 76 regions (d) 100 regions

Figure A.2: CoSE-Bilkent Layout Results
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(a) left brain selection (b) 34 regions

(c) 76 regions (d) 100 regions

Figure A.3: Spread Layout Results
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A. Layout Results

(a) left brain selection (b) 34 regions

(c) 76 regions (d) 100 regions

Figure A.4: Cola Layout Results
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(a) left brain selection (b) 34 regions

(c) 76 regions (d) 100 regions

Figure A.5: Klay Layout Results
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A. Layout Results

Figure A.6: The initial state for both dynamic test cases
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(a) open left side (first step) (b) open left side (second step)

(c) open left side (third step) (d) Closing left side selection

Figure A.7: Deep hierarchy selection layout results
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A. Layout Results

(a) "opening" left brain selection (b) "opening" right brain selection

(c) "closing" left brain selection (d) "closing" right brain selection

Figure A.8: Left and right layout results
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(a) 34 regions selection (b) 36 regions selection (left side of the brain)

Figure A.9: Selections shown in the parcellation browser
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A. Layout Results

(a) 76 regions selection (left side) (b) 76 regions selection (right side)

Figure A.10: 76 regions selection shown in the parcellation browser
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(a) 100 regions selection (left side) (b) 100 regions selection (right side)

Figure A.11: 100 regions selection shown in the parcellation browser
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